
Demonstration of CFlow: Supporting Semantic Flow Analysis of
Students’ Code in Programming Problems at Scale

Ashley Ge Zhang
University of Michigan

Ann Arbor, Michigan, USA
gezh@umich.edu

Xiaohang Tang
Virginia Tech

Blacksburg, Virginia, USA
xiaohangtang@vt.edu

Steve Oney
University of Michigan

Ann Arbor, Michigan, USA
soney@umich.edu

Yan Chen
Virginia Tech

Blacksburg, Virginia, USA
ych@vt.edu

f d
i

The initial visualization The filtered view

Re-flow the visualization

Variable initialization

Iterate through variables

Conditional statements

Others

All of the code lines within the group are correct None of the code lines within the group are correct

a
g

h

b

1 2

e

c

j

k

Figure 1: CFlow allows users to explore the semantic flows of student code submissions at a high level through semantic
aggregation. First, users are presented with an overview of the entire set of solutions (1), including the SAV (a) and the SHV
(b). They can then click on individual code lines (f) to progressively explore the details of specific implementations. The
visualization will update to focus on a smaller subset of solutions, displaying the aggregated flow and distributions of the
selected set only (2). Users can inspect details of the flow at individual code level in the CDV (e). CFlow offers a breakdown of
types of errors within that group (k), and detailed solutions with context-aware highlighting (h).

ABSTRACT
Introductory programming courses have been growing rapidly, now
enrolling hundreds or thousands of students. In such large courses,
it can be overwhelmingly difficult for instructors to understand
class-wide problem-solving patterns or issues, which is crucial for
improving instruction and addressing important pedagogical chal-
lenges. In this paper, we propose a technique and system, CFlow,
for creating understandable and navigable representations of code
at scale. CFlow is able to represent thousands of code samples in a
visualization that resembles a single code sample. CFlow creates
scalable code representations by (1) clustering individual state-
ments with similar semantic purposes, (2) presenting clustered
statements in a way that maintains semantic relationships between
statements, (3) representing the correctness of different variations
as a histogram, and (4) allowing users to navigate through solutions
interactively using semantic filters. With a multi-level view design,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
L@S ’24, July 18–20, 2024, Atlanta, GA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0633-2/24/07
https://doi.org/10.1145/3657604.3664717

users can navigate high-level patterns, and low-level implementa-
tions. This is in contrast to prior tools that either limit their focus
on isolated statements (and thus discard the surrounding context of
those statements) or cluster entire code samples (which can lead to
large numbers of clusters—for example, if there are 𝑛 code features
and𝑚 implementations of each, there can be𝑚𝑛 clusters).

CCS CONCEPTS
• Human-centered computing→ Information visualization;
• Applied computing → Education; • Software and its engi-
neering;

KEYWORDS
Code Visualization, Programming Education, Code Clustering

ACM Reference Format:
Ashley Ge Zhang, Xiaohang Tang, Steve Oney, and Yan Chen. 2024. Demon-
stration of CFlow: Supporting Semantic Flow Analysis of Students’ Code in
Programming Problems at Scale. In Proceedings of the Eleventh ACM Con-
ference on Learning @ Scale (L@S ’24), July 18–20, 2024, Atlanta, GA, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3657604.3664717

https://orcid.org/0000-0001-5978-3714
https://orcid.org/0000-0002-2691-9280
https://orcid.org/0000-0002-5823-1499
https://orcid.org/0000-0002-1646-6935
https://doi.org/10.1145/3657604.3664717
https://doi.org/10.1145/3657604.3664717


L@S ’24, July 18–20, 2024, Atlanta, GA, USA Ashley Ge Zhang, Xiaohang Tang, Steve Oney, & Yan Chen

1 INTRODUCTION
Understanding student code is crucial for instructors to provide per-
sonalized feedback and enhance student learning outcomes. When
performing these tasks, instructors often need to: 1) identify issue-
relevant code, and 2) understand the underlying reasons for students’
struggles. However, with increasing enrollments in CS courses and
the diversity of student codes, these tasks become challenging for
two reasons. First, students’ errors could span multiple lines in code
and be correlated. How students put code lines together reflect the
student’s thoughts on problem solving. An issue might be as simple
as a one-line error, or as complex as a mistake spanning multiple
lines, such as improper initialization and modification of variable
values. Switching between code syntax and semantics on a large
scale is cognitively demanding. Second, even with identical syntax
structure, two submissions could yield different outputs, and vice
versa. For example, students might arrange their if-else statements
differently yet produce the same output. This nuanced difference
makes it difficult to aggregate a large number of code issues at both
the syntax and semantic levels.

Prior work has explored designs to identify code issues using a
variety of methods. For example, OverCode addressed scalability
concerns by clustering and visualizing student code submissions [3].
However, it targeted primarily on specific issues such as different
variable names, and focused on the computations of programs in-
stead of high-level misconceptions between lines of code. To facili-
tate the discovery of high-level patterns, RunEx enabled instructors
to construct runtime and syntax-based search queries with high
expressiveness [4]. However, code search tools depend on instruc-
tors to generate search queries and demand prior knowledge on
students’ mistakes. VizProg uses a 2D map view and dynamic dots
to represent students’ coding progress in a concise view, providing
instructors a general sense of mistakes [5]. VizProg’s downside is
that it lacks semantics meanings between the abstract visual cues
and the detailed code content.

In this paper, we introduce a novel method that visualizes the
flow of code statements to facilitate analyzing students’ submis-
sions [6]. Similar to the narrative flow in an essay, the sequencing of
code statements dictates both the execution order within a program
and its runtime complexity [1]. In student submissions, this flow
sheds light on a student’s grasp of the problem, their approaches,
thought processes, and misunderstandings. However, visualizing
code flow is challenging for two reasons: First, student code sub-
missions often vary significantly in their structure and semantic
meaning. The difficulty lies in aggregating and aligning these di-
verse submissions. Second, designing a visualization that maintains
the code’s inherent structure while facilitating flow analysis is diffi-
cult, as the same code semantic flow might have different structures
across submissions. Additionally, aggregating code structures on
a large scale could make it more cognitively overwhelming for in-
structors. For instance, by showing the variation within steps across
submissions, it could introduce much more complexity at each step
of the approaches than simply reading a single code sample. There-
fore, visualizations must present flow information in a way that
effectively combines code samples and maintains the readability of
the original code samples.

To tackle these challenges, we designed CFlow, a system com-
prising three distinct views: the Semantic Aggregation View (SAV,
Figure 1a), the Semantic Histogram View (SHV, Figure 1b), and the
Code Detailed View (CDV, Figure 1e). In essence, CFlow aims to
represent semantic flows between distinct value sets and showcases
categorical variances. Specifically, CFlow employs a multi-step al-
gorithm where each code line is subjected to a detailed semantic
analysis and error check using Large Language Model (LLM). These
lines are then vectorized using CodeBert [2] to group them based
on similarity. A “common progression” of steps from correct so-
lutions provides a reference structure for mapping all solutions.
The resultant structured data is then visualized in a color-coded
format, enabling educators to quickly pinpoint student challenges
and misconceptions. This method 1) highlights semantic patterns
by frequency and accuracy, and 2) simplifies the navigation and
comparison of code flows. The core insight of CFlow is to align
instructors’ analysis of code submissions with the intrinsic charac-
teristics of student code. Details of CFlow’s user interface is shown
in Figure 1.

2 DEMO EXECUTION
The demo consists of a standalone website, with its front end de-
veloped in React and TypeScript, and the back end in Python. It is
hosted on the author’s computer, which serves as the server. To set
up and run the demo, the author’s computer needs npm installed
and must be connected to the internet.

Visitors will interact with the demo directly on the author’s
computer or through a network connection to the author’s server,
e.g. visiting a website through a given URL on their own device,
depending on the setup. They will navigate a website displaying
the demo, where they can engage with interactive visualizations.
These visualizations allow users to explore various students’ errors
and approaches in a dataset. Users can manipulate the visual data
through clicks and other simple interactions, providing a hands-on
experience to understand the insights the demo offers. Figure 1
shows the user interface of the demonstration, CFlow. With the
demonstration, visitors would be able to click the visual elements in
CFlow, through clicking the code labels and the histogram elements.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under DUE 1915515.

REFERENCES
[1] Frances E Allen. 1970. Control flow analysis. ACM Sigplan Notices 5, 7 (1970),

1–19.
[2] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[3] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.
2015. OverCode: Visualizing variation in student solutions to programming
problems at scale. ACM Transactions on Computer-Human Interaction (TOCHI) 22,
2 (2015), 1–35.

[4] Ashley Ge Zhang, Yan Chen, and Steve Oney. 2023. RunEx: Augmenting Regular-
Expression Code Search with Runtime Values. In 2023 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 139–147.

[5] Ashley Ge Zhang, Yan Chen, and Steve Oney. 2023. Vizprog: Identifying misun-
derstandings by visualizing students’ coding progress. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems. 1–16.



Demonstration of CFlow: Supporting Semantic Flow Analysis of Students’ Code in Programming Problems at Scale L@S ’24, July 18–20, 2024, Atlanta, GA, USA

[6] Ashley Ge Zhang, Xiaohang Tang, Steve Oney, and Yan Chen. 2024. CFlow:
Supporting Semantic Flow Analysis of Students’ Code in Programming Problems

at Scale. In Proceedings of the Eleventh ACM Conference on Learning@ Scale. 188–
199.


	Abstract
	1 introduction
	2 Demo Execution
	Acknowledgments
	References

