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Abstract—Programming instructors frequently use in-class
exercises to help students reinforce concepts learned in lec-
ture. However, identifying class-wide patterns and mistakes in
students’ code can be challenging, especially for large classes.
Conventional code search tools are insufficient for this purpose as
they are not designed for finding semantic structures underlying
large students’ code corpus, where the code samples are similar,
relatively small, and written by novice programmers. To address
this limitation, we introduce RunEx, a novel code search tool
where instructors can effortlessly generate queries with minimal
prior knowledge of code search and rapidly search through a
large code corpus. The tool consists of two parts: 1) a syntax
that augments regular expressions with runtime values, and 2)
a user interface that enables instructors to construct runtime
and syntax-based queries with high expressiveness and apply
combined filters to code examples. Our comparison experiment
shows that RunEx outperforms baseline systems with text match-
ing alone in identifying code patterns with higher accuracy.
Furthermore, RunEx features a user interface that requires
minimal prior knowledge to create search queries. Through
searching and analyzing students’ code with runtime values at
scale, our work introduces a new paradigm for understanding
patterns and errors in programming education.

Index Terms—code search, programming education

I. INTRODUCTION

In large programming courses with hundreds or thousands

of students, it can be difficult for instructors to provide timely

and personalized feedback. Programming instructors often face

the challenge of finding and understanding class-wide patterns

in students’ code [1]. As a result, students may not receive the

support they need to succeed, and instructors may not have a

clear understanding of the learning needs of their students.

For example, an instructor might want to check how many

students correctly adopt the concepts taught in class, track the

prevalence of particular mistakes, or simply search for specific

approaches among a large set of student code samples. These

tasks represent instances of "code search", as outlined in the

literature by Di Grazia et al [2]. Code search is a longstanding

and well-studied research topic; however, the vast majority of

prior work has focused on professional developers [3]–[6].

In the context of programming education, there are unique

design challenges and opportunities for code search tools. For

This material is based upon work supported by the National Science
Foundation under DUE 1915515.

instance, in programming classes—particularly introductory

ones—an instructor might conduct a search across code sam-

ples that are relatively small and self-contained, rather than

in larger codebases with complex dependencies [7], [8]. This

allows for the possibility of executing the candidate code sam-

ples and more easily searching across runtime values in novel

ways. Further, whereas many code search tools are focused on

finding a handful of optimal examples (e.g., finding code to

reuse), an instructor’s goal might be to get descriptive statistics

about their class [7]–[9]. This necessitates re-designing how

we display the output from code search tools. Finally, whereas

most code search tools focus on finding new code samples that

fit some criteria, instructors might want to find code samples

that are similar to an existing piece of code [7]. For example,

they might observe an anti-pattern—code that works but goes

against the principles being taught—in one student’s code and

want to assess its prevalence in the class.

In this paper, we propose RunEx, a system using a novel

code search approach that enables programming instructors

to quickly identify and comprehend class-wide patterns in

large codebases of students’ code. RunEx integrates regular

expressions with runtime values for enhanced functionality.

Regular expressions are powerful tools for advanced text

matching and manipulation. Integrating runtime values into

regular expressions expands instructors’ capabilities to access

code execution status, enabling a wider exploration and anal-

ysis of students’ code. We provide a user-friendly interface

designed for instructors to create search queries without prior

knowledge of regular expressions, facilitating the creation of

queries with minimal search syntax understanding. Our user

interface presents search results in a way that facilitates the

identification of class-wide patterns and trends. We designed

our tool for programming instructors, focusing on searching

through small, short, and standalone code samples that are

typical of introductory courses. The user interface we develop

is optimized for searching through many similar variations of

a common piece of code, making it particularly suited for

educational settings. We also evaluated the efficacy of RunEx

through a user study with programmers and programming

instructors. Our findings indicate that RunEx can significantly

enhance participants’ abilities in three key areas when com-

pared to baseline systems. Firstly, it can assist them in iden-
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tifying mistakes and patterns with greater accuracy. Secondly,

it enables them to easily create search queries with minimal

prior knowledge. Finally, it allows them to fully express their

intentions in search queries, thereby improving the overall

efficiency of the search process. This paper contributes:

• A syntax and mechanism that combine regular expres-

sions and runtime value specifications, enabling precise

and targeted code search.

• A user interface specifically designed for programming

instructors to easily create runtime and syntax-based

queries and search through the resulting matches.

• A user study that compares the effectiveness of our

proposed system with text-based code search.

II. RELATED WORK

This work draws on several insights in code search, pro-

gramming education at scale, and live programming.

A. Code Search

Code search enables fast retrieval of relevant code snippets

from a codebase. Searching through large codebases manually

can be time-consuming and error-prone. Code search tools

help users understand how specific features or functions are

implemented and can aid in trouble shooting and debugging.

Code search engines index and retrieve code examples

based on various artifacts such as source code [10], natural

language [11], and runtime behavior [12]. Many approaches

target the source code itself, using text level matching, al-

gorithmically extracted feature vectors [13], and learning-

based retrieval [14]. Some approaches focus on compiled

code by finding functions that are similar in binaries [15]. In

addition, some code search engines analyze runtime behavior,

particularly input-output behavior [12], [16], [17].

Code search engines support various query types, including

natural language [18], programming language-based [19], cus-

tom querying languages [10], and input-output examples [12].

When designing queries, three goals should be considered:

ease of use, expressiveness, and precision. Natural language

queries are easy to create and are expressive, but lack pre-

cision. Programming language-based queries are easy to for-

mulate, with varying expressiveness and precision depending

on users’ intention and the search engine they use. Custom

querying languages offer high expressiveness and precision

but require learning [2]. We designed a syntax that integrates

runtime values and regular expressions, providing high expres-

siveness and precision. To address the challenge of providing a

convenient querying interface [2], we designed a user interface

for instructors to easily create queries combining runtime

behavior and syntax matching for code search.

We also draw on the design of commercial code search

engines because of scalability consideration. Github’s search

engine uses fuzzy search to match patterns, allowing for

the use of regular and logical operators in queries to re-

fine results [20]. Stack Overflow enhances the code search

experience by incorporating context beyond code snippets,

considering factors such as tags, and code match to provide

users more semantically relevant results [21]. Building upon

these insights, RunEx seeks to enhance code search by using

runtime values as the ‘semantic query’ to search for desired

students’ behaviors over many code snippets.

B. Programming Education at Scale

Prior work explored challenges in teaching programming

at scale [22]–[24]. Understanding students’ code at scale is

difficult [1]. Instructors need to read the code to understand

students’ mental model because misconceptions are abstract

and implicit. In addition, the large size of programming

courses leads to thousands of various solutions for one sin-

gle programming exercise. Understanding the variation and

patterns among the solutions is time-consuming and tedious.

Researchers have developed tools to support instructors in

understanding students’ code [1], [22], [23]. Existing tools

aim to provide instructor and overview of students’ code, by

clustering solutions [22], encoding semantic meaning of code

onto a map visualization [1], or summarizing students’ coding

activities in real-time [23]. However, these tools fall short in

supporting instructors to easily search through thousands of

code samples. The features these tools rely on are not the

same as the features that instructors want to search for. When

we tested our code samples with Overcode [22], it clustered

3,102 code samples into 1,504 clusters, which still presents a

significant search burden for instructors.

Code search at the text level is not sufficient for instructors

in understanding students’ code. Instructors need to inspect

variable values to gain a deep understanding of students’

mistake. Prior work explored code search engines that analyze

runtime behavior use input-output results [12], [16], [17]. In

the context of programming education, Codewebs is a code

search engine that utilizes Abstract Syntax Trees (ASTs) and

unit test results to match code example, allowing instructors to

index over a million code submissions [8]. Codewebs is limited

to filtering by runtime values that hold after a given code

sample has executed (i.e., related to the unit test), whereas

RunEx can filter runtime values that held during execution.

This ability to filter code samples based on intermediate

values, which Codewebs does not support, is key to allow

instructors to check how a student solved a problem more

accurately. Additionally, we integrated the novel code search

syntax into a user interface where instructors can easily

build queries and search through the resulting matches using

techniques combining runtime value and text matching.

C. Live Programming, Visualizing Code

RunEx’s design draws inspiration from live programming

tools that provide always-on visualizations of runtime val-

ues as users take editor activities, such as keypresses. This

technique effectively addresses information overload by al-

lowing developers to manage displayed information, tailoring

it to their preferences and specific programming tasks. For

example, Projection Boxes is a live programming system that

enables developers to adjust the level of always-on information

to suit their needs [25]. SNIPPY is another tool that empowers
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users to modify the runtime values displayed in live visualiza-

tions using local program snippets, thereby facilitating faster

problem-solving for more complex issues [26]. Theseus, on the

other hand, streamlines the debugging process by presenting

the runtime values of function calls as users interact with

program output [27]. Although these tools hold promise, they

were primarily designed for individual developers creating

programs. In contrast, RunEx extends this functionality by

enabling users to “create a local program” through iterative

search and refinement of code snippets from search results.

III. SYNTAX & PAPER NOTATION

We propose a new syntax for that augments the standard

regular expression syntax by adding optional specifications

for matching specific runtime values. This way, our syntax

provides greater expressiveness and precision without losing

any of the flexibility of regular expressions for code search.

In this syntax, RunEx uses ‘<<’ and ‘>>’ to denote the start

and end of regions that specify runtime constraints.

Paper notation: For the sake of brevity and clarity in

writing, we will use several representational shorthands:

• We use ‘«’ and ‘»’ for ‘<<’ and ‘>>’ respectively.

• We use lambda functions (Python’s syntax for anony-

mous inline functions) frequently, so we use the notation

‘λv,s’ as a shorthand for ‘lambda v,s:’.

• Many regular expressions need to match Python variable

names (which start with a letter or underscore and contain

any number of letters, underscores, or digits). The regular

expression for matching a valid Python variable name is

‘[a-zA-Z_]\w*’. We will use ‘*v*’ as a shorthand

for this regular expression.

• Spacing is typically ignored in Python (with the exception

of indentation). For this reason, the regular expression for

matching one or more spaces—‘\s+’ is commonly used

in place of a single space. However, for the sake of clarity

in this paper, we will typically use a single space rather

than writing out this full expression.

In our proposed syntax, the content inside of «» can be (1)

a value, (2) a lambda expression, or (3) empty (which will

match any runtime value). If it is a value, the pattern will only

match expressions that evaluate to that value (as determined

by Python’s == operator). For example, the search expression

range(«10») matches all of the following:

• range( 10 )
• range(5 + 5)
• x = 10
range(x)

It does not match range(2) or any other code that does

not match both the text and runtime values.

For more expressiveness, the brackets («») can contain a

lambda expression that accepts two arguments—a runtime

value and a string with the contents of the expression—and

returns a boolean. For example, range(«λv:v==10») is

equivalent to the previous expression range(«10»). How-

ever, lambda expressions give users more flexibility:

• To match a call to len() with any list as an argument:

len(«λv: type(v) is list»)
• To match a assignment to dictionary d where the key is

any string and the value is greater than 1001:

d[«λv: type(v) is str»] = «λv: v > 100»
• To match a for loop that iterates over a list with more

than 2000 items:

for «» in «λv: len(v) > 2000»:

As we will describe in section V, we also provide a user

interface for RunEx to help users build these expressions.

IV. USE CASES IN PROGRAMMING EDUCATION

Although the idea of integrating runtime values is applicable

to many use cases, we focus on the domain of programming

education—particularly in introductory classes. We focus on

this domain for several reasons. First, programming education

is vital in today’s increasingly digital world, but computer

science courses still have among the highest rates of attrition

and failure [28]. This is, in part, due to persistent student mis-

conceptions [29] and a lack of personalized guidance. These

challenges can be significantly addressed by tools that help

instructors understand students’ misconceptions. Such tools

can allow them to find common patterns, identify students who

might benefit from extra guidance, and adapt their instruction

accordingly to address misconceptions. RunEx is specifically

focused on the first step of this problem—helping instructors

identify patterns and find code samples that meet their criteria.

The next step (adapting their instruction or reaching out to

students who need assistance) is outside of the scope of RunEx

but could be achieved with other tools [23], [30].

Second, although code search is a well-researched topic [2],

we believe that code search in the context of programming

education is understudied. Unlike most other code search

contexts, instructors might want to do code searches in order

to gather descriptive statistics of their class, instead of finding

a single ideal code sample. Further, the educational setting

opens new design opportunities. For example, in many classes,

students are assigned to write short standalone programs that

can be executed and tested with minimal computational cost.

This makes it practical to perform runtime value searches

described in section III by executing the code samples.

There are many situations in which instructors would benefit

from performing the types of code searches that RunEx sup-

ports. In this section, we describe three illustrative examples.

A. Understanding Students’ Problem Solving Approaches

To better understand their class, instructors might want

to better understand students’ problem solving approaches—

e.g., how many students used a given approach to solve

a problem. Code clustering tools can help with this but

might not cluster along the dimensions that the instructor

is interested in. For example, suppose students wrote code

answering the problem “given a sentence (string), find a

list of words that do not contain a vowel.” An instructor

1We could also handle aliasing by replacing ‘d’ with ‘«λv: v is d»’
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might want to know how many students solved this prob-

lem by, in part, writing an if statement that checked if

individual characters are a part of a list of vowels (for ex-

ample: if char in ['a','e','i','o','u']). Do-

ing this with standard regular expressions is difficult to the

point of impracticality. It would need to handle cases where

students used a variable name other than c, where the list of

vowels was in a different order, where the list of vowels was

in a variable instead of a literal expression, where they used

double quotation marks (") instead of single quotation marks

('), and many more failure cases. It also would not be able to

specifically check if char is one character long. With RunEx,

however, this could be done with the search expression:

if «λv: len(v)==1» in
«λv:''.join(sorted(v))=='aeiou'»:

This search expression would match a wide variety of

functionally identical solutions, including cases where students

assigned a variable to be a list of values, where they put the

vowels in a different order, etc. After performing this search,

the instructor might then use RunEx to explore solutions that

are correct but did not use this approach.

B. Assessing the Prevalence of Anti-Patterns

Instructors might also want to find anti-patterns—solutions

that pass their test cases but go against the principles

taught in the class. For example, suppose a problem in-

volves looping over the keys in a dictionary. In Python,

this can be done by looping over the dictionary ob-

ject itself (e.g., for k in d:) or by explicitly calling

the .keys() method (e.g., for k in d.keys():). Al-

though both methods are functionally equivalent, the instructor

might want to encourage students to use the latter approach.

They might thus want to identify every student who loops over

the dictionary objects directly.

This can be difficult in regular code search, as there are

many kinds of expressions that can produce dictionary objects.

However, it is trivial to express in RunEx:

for «» in «λv: type(v) is dict»:
By performing this search, the instructor might be able to

assess the prevalence of this anti-pattern in their class.

C. Identifying Students who would Benefit from Guidance

Instructors might also want to identify a common mistake

and find students who made that mistake and would benefit

from guidance. For example, suppose a problem gives students

a large table with columns for first names, last names, and

ages and asks students to sort the first names according to

their age. One approach for solving this problem is to (1)

create a dictionary where the keys are names and the values are

ages and (2) sort the keys in the dictionary according to their

value. However, many students might not identify a potential

pitfall that is easy to miss: if the keys are strings with just the

first name, then any entries with the same first name will be

lost (since there can only be one key-value pair with a given

key value). Instead, the keys could be pairs (Python tuples)

of first and last names to prevent common first names from

being overwritten. An instructor might want to identify every

student who made the mistake of using strings as keys. This is

effectively not possible with just regular expressions but with

RunEx an instructor could search for dictionary assignments

where the key is a string:

«λv type(v) is dict»[«λv type(v) is str»]=
Importantly, in all of these scenarios, even if the instructor

is not able to immediately craft the ideal query for their

search, they can still benefit from exploring and refining with

imperfect queries. RunEx provides user interface that helps

instructors write queries and understand the results.

V. USER INTERFACE

A. System Design Goals

From prior work and the use cases described in Section IV,

our design of RunEx was guided by three design goals.

• Design Goal 1 (DG1): Ability to search code across
runtime values. As section IV describes, there are many

situations where it would be beneficial to match both text

and runtime values. Thus, we designed RunEx to make

it easier to correctly form these types of queries.

• Design Goal 2 (DG2): Easily create search queries
to find code samples that fit some criteria. Writing

search queries using syntax like regular expressions re-

quires prior knowledge and can be time-consuming. We

designed a user interface where instructors can easily

create search queries with minimal prior knowledge of

any search syntax. This would allow instructors to find

as many patterns and mistakes as possible.

• Design Goal 3 (DG3): Ability to fully express instruc-
tor’s intention in the search queries. A challenge of

existing search interfaces for instructors is to express their

intentions effectively in search queries. The complexity

of search algorithms further compounds this difficulty. To

address this, the user interface should assist instructors in

fully expressing their intentions in search queries.

B. RunEx’s User Interface

To fulfill these design goals, we designed RunEx, a code

search tool that combines syntax and semantic code search

functions, enabling users to search code naturally by adding

runtime values as context and constraints. Furthermore, it al-

lows the formulation of nested and multi-logic queries to refine

these constraints. Within the interface, users are provided with

a standard search box and a grid view of the search results.

Each cell in this grid is a code editor that displays a specific

student’s submission. In the following section, we illustrate

the use case of RunEx with a detailed example.

Step 1: Search and refine a query Once instructors find

a pattern or a mistake they are interested in, they can create a

search query by selecting content in the code block (Fig. 1.a).

The selection is highlighted in orange background. Instructors

can click any variable in the selection to add constraints to the

variable. When the variable is clicked, a input area is displayed

below it. It is checked by default in the input area to match

any variable name, which means any code that has the same

142



Fig. 1. RunEx’s User Interface: Comprised of three steps. (a, b) Search and refine query: Users initiate a query by highlighting code sections. (c1, c2)
Chaining queries: Set operations are applied to compose queries. (d1,d2) Viewing results: Results, are presented with matches highlighted.

pattern but uses different variable names should be matched

when searching. To add constraints on the runtime value of a

variable, instructors can type in a Python condition in the input

for “value(v)”. For example, to check whether the runtime

value is a Python string, instructors can use the condition

type(v) is str. This is equivalent to «λv: type(v)
is str». Additionally, instructors can add constraints on

the name of variable (which does not reference the runtime

value). To check whether the variable name has more than

two letters, instructors can apply the condition len(n) > 2
for “name(n)” (Fig. 1.b). After making a selection and adding

constraint to the variables, instructors can click the search

button on the top right corner to create a query (Fig. 1.a).

Step 2: Chain queries Once a search query is created,

each query has a pie chart and a label presenting query’s

content (Fig. 1.b). The pie chart provides descriptive statistics,

showing how many students’ code match this query when

hovered on. The label shows the content of the query. The

variables highlighted in blue represent variables that should

match any variable names. When hover on variables, those

with constraint on runtime value or variable names would

display the constraint below the content (Fig. 1.b). The query

matches the pattern for v1 in v0:, where v0 matches

any variable, and v1 matches values that are strings and where

the program text has more than two characters.

To help instructors fully express their intention in the search

query, RunEx provides a search bar where instructors can

apply set operations on queries and create chaining queries

(Fig 1.c2). RunEx supports four types of set operation:

• Intersection: Query A && Query B && ...
• Union: Query A || Query B || Query C || ...

• Difference: Query A - Query B - Query C - ...

• Complement: !Query A
Set operations can be applied on queries by dragging the

queries and typing symbols in the search bar(Fig. 1.c1).

Step 3: View the results The example query in Fig. 1.c1

searches for the complement set of students who use a for
in their code. It matches the results where students use a list

comprehension or a while loop (Fig. 1.d1).

Furthermore, instructors can chain a new query to an exist-

ing query by typing code and dragging queries into the search

bar (Fig. 1.c2). For instance, the instructor first creates query to

search for the pattern set(v0) where v0 can be any variable.

Then the instructor would like to know how many students

directly apply a for loop on the pattern set(v0). The

instructor can create a new query by typing in for i in,

dragging the initial query into the search bar, and making

the variable i match any variable name (Fig. 1.c2). Fig. 1.d2

shows the results that match this query.

VI. IMPLEMENTATION

When a user performs a search using RunEx, our system

takes two steps: text-based matching and runtime value match-

ing. The first step (text-based matching) involves checking

that there is text in the code sample that matches the user’s

specification. To start, our implementation converts the aug-

mented regular expression into a standard regular text-based

expression. For this conversion, anything in the angle brackets

(«») gets converted to a regular expression that matches any

text (.*). For example, the search query range(«40»)
is converted to range(.*). If a code sample matches the

converted regular expression, it then gets passed to the second

step: runtime value matching.

To perform runtime value matching, RunEx then indexes

the runtime value specifications (whatever is within «») and

the larger code sample it is matching against (which must have

already passed the text-based matching step). Every runtime

value specification gets converted to a lambda function—

empty queries («») get translated to lambda: True and

value queries are translated directly (e.g., «40» gets translated

to lambda v: v == 40). RunEx converts these lambda
functions to strings and tracks them by index (e.g., {1:
"lambda v: v==40", 2:"...", ...}.

RunEx then does a text-based replacement of portions of

the larger code sample being matched against, using a special

function that we wrote named __EVAL__, which runs the

lambda expression against the actual code.

For example, suppose we are matching the expression

range(«40») against the following code sample:

s = 0
l = []
for i in range(20 + 20):

s += i
l.append(i)
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After finding that this code sample matches the con-

verted regular expression (range(.*)) in the text-

based matching step, RunEx then replaces the por-

tion of code that matched with a special fragment:

__EVAL__(20 + 20, lambda x: x==40). We then

run the converted code:

s = 0
l = []
for i in range(__EVAL__(20 + 20,

lambda x: x==40)):
s += i
l.append(i)

We define the __EVAL__ function as2:

SIGNAL = False
def __EVAL__(variable, fn):

global SIGNAL
if fn(variable):

SIGNAL = True
return variable

The code sample is considered a ‘match’ if the value of

SIGNAL is True after the code has executed. As we will

discuss in the ‘Limitations’ section, one downside to our

implementation of RunEx is that the __EVAL__ substitution

does not work in every situation. Most notably, it does not

work on the left side of variable assignment statements because

a search expression like «» = 5 would be translated into

the syntactically invalid statement __EVAL__(...) = 5.

However, when constraints in the RunEx UI are declared

that do not have any runtime value constraints, RunEx does

not insert a call to __EVAL__, as these searches can be

done with standard regular expressions. This is why we can

specify a constraint on the length of v1 in the expression

for v1 in v0: in Figure 1.b.

VII. USER STUDY

We conducted a within-subjects study to evaluate the ef-

fectiveness of RunEx for searching through large numbers of

code samples. Specifically, participants searched through more

than 3000 code samples from students in prior programming

courses (that were slightly modified to ensure anonymity). We

designed two code search tools with text matching alone as

our baseline systems, with limited user interface and search

capabilities as described in Section VII-A4. We selected code

search tools with text matching alone as a baseline due to their

widespread use in real-world programming courses.

A. Method

1) Recruitment: Because the target users of RunEx are pro-

gramming instructors, we primarily recruited participants with

experience teaching Python programming courses. We reached

out students from the Computer Science and Information

Science programs at the University of Michigan and Virginia

Tech. During the screening session, participants were asked

2This version of __EVAL__ is a simplification of our implementation,
which also passes in the program text as an argument to fn.

about their previous experience teaching Python. Qualified

participants were experienced Python programmers, including

graduate student instructors, teaching assistants, tutors, and

senior students with at least 2 years of Python programming

experience. We recruited 12 participants, consisting of 6 men

and 6 women. All 12 participants completed the 70-minute

user study. Their experience in Python programming ranged

from 2 years to over 6 years, with 10 participants having

previously taught programming courses in Python.
2) Programming problems and students’ solutions: To en-

sure the authenticity of the data used in the study, we collected

data from a large introductory programming course at the

University of Michigan. This data consisted of students’ solu-

tions to three distinct programming problems assigned in the

course, completed on their own time. The data were collected

from an interactive Python textbook used by the course.

The data contain genuine examples of mistakes and common

patterns that students had when approaching the programming

problems. To maintain comparability across the systems, we

selected one programming exercise from the dataset for each

system that had a comparable level of complexity.

Exercise 1 (E1): Given a string, return a variable counts,

where the keys are letters in the string, the values are how

many times each letter appears in the string.

Exercise 2 (E2): athletes is a nested list of strings.

Create a list, t, that saves only the athlete’s name if it contains

the letter ‘t’. If it does not contain the letter ‘t’, save the athlete

name into list other.

Exercise 3 (E3): For each word in words, add ‘d’ to the

end of the word if the word ends in ‘e’ to make it past tense.

Otherwise, add ‘ed’ to make it past tense. Save these past tense

words to a list called past_tense.

The three selected programming exercises, E1, E2, and E3,

had 3249, 3942, and 3496 Python code examples, respectively.

The solutions varied from 3 lines to 15 lines of code. We

checked each submission to ensure that it did not contain any

identifying information or present any privacy concerns and

anonymized appropriately3.
3) Study setup: In our within-subjects evaluation, partic-

ipants engaged in a 70-minute user study, utilizing RunEx

alongside two baseline systems. The order of systems and

tasks was counterbalanced using the Latin squares method to

minimize learning biases. Participants received 15 minutes of

system training, including exploration of the user interface.

During this training, participants used RunEx to browse a

subset of student solutions and conducted training tasks within

the subset using RunEx.

After the training session, participants utilized RunEx and

the two baseline systems to view solutions for three distinct

programming problems. For each programming problem, par-

ticipants were given 15 minutes to answer quiz questions

related to students’ coding patterns and errors using the

system. Subsequently, after using all three systems to review

3In our examples, there was no identifying information contained in code.
In other examples, students might use their given name as a variable name or
output their name in their code
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students’ solutions to the programming problems, participants

were asked to complete a survey regarding their overall user

experience. Additionally, we conducted a reflective interview

to facilitate a comparison between the different systems.

This study was conducted remotely using Zoom. During the

study, we recorded participants’ screens as they performed

the tasks, as well as their responses to the quiz questions

and their audio think-aloud process, along with their answers

to the post-study survey and the follow-up interview. Each

participant was compensated with a $25 USD Amazon Gift

Card for their participation in the study.

4) Baselines: We designed two restricted versions of

RunEx as baseline systems, featuring limited user interface and

search capabilities. The baselines enabled code search based

on text matching alone, without runtime values.

Baseline 1 (B1) allowed code search through text matching.

Users could employ the “command + f” shortcut to search for

exact text snippets or input regular expressions in the search

bar for more complex patterns in students’ code. The other user

interface elements of RunEx were disabled in B1. We designed

B1 as “command + f” and regular expressions are widely

used for searching through large code corpus in programming

courses. To help participants write regular expressions, they

were allowed to use any external resources, such as Google,

online cheatsheets for regular expressions, and ChatGPT.

Baseline 2 (B2) allowed code search through text level

matching alone, using the same user interface as RunEx.

Users could create search queries by selecting code from the

code blocks and apply set operations on queries. In B2, we

disabled the ability to type in constraints on runtime value, thus

removing runtime value search. B2 was designed to augment

B1 by providing a user interface to create queries.

5) Data collection: In the screening session, we collected

data on participants’ teaching experience and Python pro-

gramming experience. Throughout the study, one researcher

was present to collect data. We developed a coding scheme

to capture the behaviors observed during the study. One

researcher graded the accuracy of participants’ answers to quiz

questions. We collected participants’ answers to the post-study

survey and the interview questions to compare the baseline

systems and RunEx. Questions were designed to elicit honest

feedback by not revealing which system was the “control”.

B. Results

The quiz questions were designed as tasks for participants

to find how many students have a pattern or a mistake in

their code. One member of the research team created a list of

correct answers to the quiz questions based on the dataset.

We calculated the accuracy of participants’ responses. We

conducted a one-way ANOVA to analyze and compare the

accuracy of three conditions in E1-3 (Table I). We also used

a two-tailed Welch’s t-test to determine the significance for

our statistical analysis on accuracy in all three conditions

(Table II). We also coded the screen recordings to analyze

participants’ interactions with the tool during the tasks. In the

post-study survey, we analyzed participants’ responses to the

TABLE I
ONE-WAY ANOVA TEST ON ACCURACY OF PARTICIPANTS’ RESPONSES

TO THE QUIZ QUESTIONS IN THREE PROGRAMMING EXERCISES (E1-3).
(N: NUMBER, M: MEAN, SD: STANDARD DEVIATION)

Exercise Condition N M SD p

E1
RunEx 4 0.875 0.144

0.009B1 4 0.396 0.172
B2 4 0.604 0.185

E2
RunEx 4 0.979 0.042

0.003B1 4 0.333 0.304
B2 4 0.583 0.096

E3
RunEx 4 0.821 0.311

0.009B1 4 0.232 0.107
B2 4 0.661 0.158

TABLE II
TWO-TAILED T-TEST ON ACCURACY OF PARTICIPANTS’ RESPONSES TO

THE QUIZ QUESTIONS IN ALL PROGRAMMING EXERCISES (N: NUMBER,
M: MEAN, SD: STANDARD DEVIATION)

Pairs M SD P
RunEx 0.892 0.193

< 0.0001B1 0.320 0.203
RunEx 0.892 0.193

< 0.001B2 0.616 0.141
B1 0.320 0.203

< 0.001B2 0.616 0.141

Likert scale questions and coded their answers to the interview

questions. We assessed if the Likert scale responses deviated

significantly from a reference value of 4 using a t-test.

1) Participants identify students’ mistakes and patterns
more accurately using RunEx’s runtime value search feature
than with the baseline systems: We compared participants’

accuracy of the tools in answering the quiz questions. Results

in Table I demonstrate that participants using RunEx achieved

significantly higher accuracy than those using B1 and B2.

Specifically, when using RunEx, 11 out of 12 participants were

successful in identifying mistakes where the code was similar

to a correct solution, but the runtime value was incorrect.

In contrast, when using the baseline systems, none of the

participants were able to identify mistakes of this nature.

On a scale from 1 (completely disagree) to 7 (completely

agree), participants agree that it is easier to identify mistakes

by runtime value and text matching, relative to text matching

alone (μ = 6.38, σ = 0.77, p < 0.0001). They mentioned that

RunEx provides more useful information to instructors than

the baseline systems, such as the type and value of variables.

The additional information is particularly helpful in identifying

students with similar mistakes and patterns (P1–2, P5–6, P10–

12). One participant mentioned that the runtime value search

makes a lot more information accessible to users:

“... Having a runtime value (search), is almost like

you have an accessible debugger where you can find

that information... It feels very accessible, because

you can match to different values, and you can

set conditions on the values, which makes it quite

usable. I’ve graded on other platforms where it’s

really just text matching most of the times ...” (P11)
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2) The quiz questions are realistic and representative of
information programming instructors would like to know:
According to the results of our study, participants agreed

that the quiz questions asked in the study are realistic and

representative of information instructors would like to know

in programming courses, with an average rating of 6.15 out of

7 (σ = 0.55, p < 0.0001). Nonetheless, participants pointed

out that programming instructors may place less emphasis on

the exact numbers and more emphasis on whether the majority

or minority of the class have similar patterns or mistakes:

“... I like the idea of the pie chart of how many

students are able to answer or have that particular

kind of mistake. I’m not interested in the exact num-

ber, but getting some sense of how many students

are making a mistake is something that I might be

interested in doing ... ” (P5)

“... We want to get more general sense of if it’s a

majority, or if it’s a very few people issue. So in that

sense, the question is asking for a specific number

which is maybe not exactly needed ...” (P11)

This suggests that instructors have strong needs of under-

standing the class-wide performance at a high level.

C. System Usability and Study Insights

1) RunEx’s user interface help participants easily cre-
ate search queries without prior knowledge: On a scale

from 1 (completely disagree) to 7 (completely agree), par-

ticipants agreed that RunEx’s user interface help easily create

search queries, with an average rating of 5.46 (σ = 0.776,

p < 0.0001). The effectiveness of RunEx’s user interface

was further supported by the significantly higher accuracy

demonstrated by participants using B2 compared to those

using B1, as shown in Table I.

We conducted an analysis of participants’ behavior when

performing tasks in conditions B1 and B2 to understand the

difference in accuracy. Results showed that all participants

used external resources such as Google, regular expression

cheat sheets, and ChatGPT when using B1. Despite this,

they still needed to iterate on their regular expressions to

validate them and find the desired information (P1–2, P4–11).

In contrast, when using B2, participants were able to quickly

and easily create search queries without prior knowledge or

external assistance through the intuitive user interface provided

by RunEx for complex text matching (P1–2, P4–6, P9–12).

With RunEx, participants could create queries without needing

to write exact search query syntax. As a result, RunEx’s user

interface enabled participants to create queries more efficiently.
2) RunEx increases the expressiveness of search queries:

On a scale from 1 (completely disagree) to 7 (completely

agree), participants agree with this statement with an average

rating of 6.38 (σ = 0.65, p < 0.0001). By applying set

operations and chaining queries, participants were able to

broaden the scope of the search and find patterns that would

have been difficult with text matching alone. Specifically, with

text matching alone, participants found it challenging to dis-

tinguish patterns that appear similar at text level but essentially

have different runtime values (P3, P8, P12). Additionally,

participants mentioned that RunEx’s user interface and runtime

value search help them fully express their intention in search

queries with minimum effort (P2, P4-6,P8-11, P12):

“ ... The little pop up is helpful, and it’s selecting

the option by default which is to match any name

which is most of the times what we want. So I think

it’s quite expressive. and the search box where we

can do set operations is expressive as well ... ” (P11)

“ ... if we didn’t have those features, the only other

thing you could do would be to write your own

custom code to filter the student solutions which

would allow you all the expressiveness that you want

but that would be separate from a simple interface

... ” (P8)

VIII. LIMITATIONS

There are several noteworthy limitations for RunEx. First,

as described in section VI, RunEx’s implementation limits the

types of runtime value searches possible. For example, no

runtime value constraints can be placed on the left hand side

of a variable assignment expression like a in the expression

a = b+1. Our implementation of RunEx also requires being

able to run the code samples being searched. As a result, non-

runnable code can only be searched through text matching,

including code samples with syntax errors, or where the

relevant portion of code is outside of the execution scope.

RunEx also does not give users fine-grained control over

how runtime values are evaluated. For example, if a match

occurs inside of a for loop, the user might want to specify that

it should only match if the condition holds for every iteration,

while RunEx matches if the condition holds for any iteration.

Finally, our design of RunEx was tested and evaluated on

relatively small code samples that are mostly computationally

inexpensive to execute, which is necessary for our current

implementation. Future versions of RunEx could remove this

constraint by tracking runtime values and program traces and

searching within these traces rather than re-executing the code

samples. Alternatively, some searches could leverage type

hinting and inferences to skip execution entirely.

IX. CONCLUSION

In this paper, we introduce RunEx, a user interface and

a syntax designed for programming instructors, that aug-

ments regular-expression code search with runtime values.

In RunEx, programming instructors can easily create queries

without prior knowledge of search syntax. Our comparison

study showed that RunEx can help participants identify class-

wide patterns and mistakes more accurately than the base-

line systems. Furthermore, participants reported that RunEx

facilitates easy creation of search queries and increases the

expressiveness of those queries. These findings highlight the

potential of code search with runtime values to further support

programming instructors in identifying common patterns and

errors in students’ code.
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