LOP-OCR: A Language-Oriented Pipeline for Large-chunk Text OCR

Zijun Sun*, Ge Zhang*, Junxu Lu, and Jiwei Li
Shannon.AI
{zijun_sun, ge_zhang, junxu_lu and jiwei_li}@shannonai.com

Abstract

Optical character recognition (OCR) for large-chunk texts (e.g., annuals, legal contracts, research reports, scientific papers) is of growing interest. It serves as a prerequisite for further text processing. Standard Scene Text Recognition tasks in computer vision mostly focus on detecting text bounding boxes, but rarely explore how NLP models can be of help.

It is intuitive that NLP models can significantly help large-chunk text OCR. In this paper, we propose LOP-OCR, a language-oriented pipeline tailored to this task. The key part of LOP-OCR is an error correction model that specifically captures and corrects OCR errors. The correction model is based on SEQ2SEQ models with auxiliary image information to learn the mapping between OCR errors and supposed output characters, and is able to significantly reduce OCR error rate.

LOP-OCR is able to significantly improve the performance of the CRNN-based OCR models, increasing sentence-level accuracy from 77.9 to 88.9, position-level accuracy from 91.8 to 96.5 and BLEU scores from 88.4 to 93.3.

1 Introduction

The task of Optical character recognition (OCR) or scene text recognition (STR) is receiving increasing attentions (Deng et al., 2018; Zhou et al., 2017; Li et al., 2018; Liu et al., 2018). It requires recognizing scene images that varies in shape, font and color. The ICDAR competition² has become a world-wide competition and covered a wide range of real-world STR situations such as text in videos, incidental scene text, text extraction for biomedical figures, etc.

Different from standard STR tasks in ICDAR, in this paper, we specifically study the OCR task on scanned documents or PDFs that contain large chunks of texts, e.g., annuals, legal contracts, research reports, scientific papers, etc. There are several key differences between the tasks in ICDAR and large-chunk text OCR: firstly, ICDAR tasks focus on recognizing texts in scene images (e.g., images of a destination board). Texts are mixed with other distracting objects or embedded in the background (e.g., a destination board). The most challenging part of ICDAR tasks is separating text bounding boxes from other unrelated objects at the object detection stage. On the contrary, for OCR task on scanned documents, the key challenge lies in the identification of individual characters rather than text bounding boxes as since the majority of the image context is text. For alphabetical languages like English, character recognition might not be an issue since the number of distinct characters is small. But it could be a severe issue for logographic languages like Chinese or Korean, where the number of distinct characters are large (around 10,000 in Chinese) and many character shapes are highly similar; (2) In our task, since we

1Zijun Sun and Ge Zhang contribute equally to this paper.
2http://rrc.cvc.uab.es/
are trying to recognize large chunks of texts, predictions are dependent on surrounding predictions, it is intuitive that utilizing NLP models should significantly improve the performance. While for IC-DAR tasks, texts are usually very short. NLP algorithms are thus of less importance.

We show two errors from the OCR model in Figure 4. The outputs are from the widely used OCR model CRNN (convolutional recurrent neural networks) (Shi et al., 2017) (details shown in Section 3). The model makes errors due to the shape resemblance between the character 染 (dye) and 柒 (the capital letter of seven in Chinese) in the first example, and “.” and “,” in the second example. Given the fact that most errors that the OCR model makes is erroneously recognizing a word as another similarly-shaped one, there is an intrinsic mapping between OCR output errors and supposed output characters: for example, the character 柒 can only be mistakenly recognized as 染 or some other characters of similar shape, but not random ones. This mapping captures the mistake-making patterns of OCR models, which we can harness to build a post-processing method to correct these errors. This line of thinking immediately points to the sequence-to-sequence (SEQ2SEQ) models (Sutskever et al., 2014; Vaswani et al., 2017), which learn the mapping between source words and target words. Actually, our situation greatly mimics the task of grammar correction or spelling checking (Xie et al., 2016; Ge et al., 2018b; Grundkiewicz and Junczys-Dowmunt, 2018; Xie et al., 2018). In the grammar correction task, SEQ2SEQ models generate grammatical sentences based on ungrammatical ones by implicitly learning the mapping between grammar errors and their corresponding corrections in targets. This mapping is systematic rather than random: for the correct sequence “I am a boy”, the ungrammatical correspondence is usually “I are a boy” rather than a random one like “I two a boy”. This property is very similar to OCR correction.

In this paper, we propose LOP-OCR, a language-oriented post-processing pipeline for large-chunk text OCR. The key part of LOP-OCR is a SEQ2SEQ OCR-correction model, which combines the idea of image-caption generation and sequence-to-sequence generation by integrating image information with OCR outputs. LOP-OCR not only corrects errors from the source-target error mapping perspective, but also from the language modeling perspective: the objective of SEQ2SEQ modeling $p(y|x)$ automatically considers the context evidence of language modeling $p(y)$. By combining other ideas like round-way corrections and reranking, we observe a significant performance boost, increasing sentence-level accuracy from 0.779 to 0.889, and the BLEU scores from 88.4 to 93.3.

The rest of this paper is organized as follows: we describe related work in Section 2. The CRNN model for OCR is presented in Section 3. The details of the proposed LOP-OCR model are presented in Section 4 and experimental results are shown in Section 5, followed by a brief conclusion.

2 Related Work

2.1 Scene Text Recognition

Recognizing texts from images is a classic problem in computer vision. With the rise of CNNs (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016; Huang et al., 2017), text detection is receiving increasing attention. The task has a key difference from image classification (assigning a single label to an image regarding the category that current image belongs to) and object detection (detecting a set of regions of interest, and then assigning a single label to each of the detected regions): the system is required to recognize a sequence of characters instead of a single label. There are two reasons that deep models like CNNs (Krizhevsky et al., 2012) cannot be directly applied to the scene text recognition task: (1) the
length of texts to recognize vary significantly; and (2) vanilla CNN-based models operate on images with fixed length, and are not able to predict a sequence of labels of various length. Existing scene text recognition models can be divided into two different categories: CNN-detection-based models and Convolutional-Recurrent Neural Networks models.

Detection-based models use Faster-RCNN (Ren et al., 2015) or Mask-RCNN (He et al., 2017) as backbones. The model first detects text bounding boxes and then recognizes the text within the box. Based on how the bounding boxes are detected, the models can be further divided into pixel-based models and anchor-based models.

Pixel-based models predict text bounding boxes directly based on text pixels. This is done using a typical semantic segmentation method: classifying each pixel as text or non-text using FPN (Lin et al., 2017), an encoder-decoder model widely used for semantic segmentation. Popular pixel-based methods include Pixel-Link (Deng et al., 2018), EAST (Zhou et al., 2017), PSENet (Li et al., 2018), FOTS (Liu et al., 2018) etc. EAST and EAST predict a text bounding box at each text pixel and then connect then using a locality aware model NMS. For Pixel-Link and PSENet, adjacent text pixels are linked together. Pixel-Link and PSENet perform significantly better than EAST and EAST on longer texts, but requires a complicated post-processing method.

Anchor-based models detect bounding boxes based on anchors (which can be thought as regions that are potentially of interest), the key idea of which was first proposed in Faster-RCNN (Ren et al., 2015). Faster-RCNN generates anchors from features in the fully connected layer. Then the object offsets relative to the anchors are then predicted using another regression model. Anchor-based text detection models include Textboxes (Liao et al., 2017) and Textboxes++ (Liao et al., 2018). Textboxes propose modifications to Faster-RCNN and these modifications are tailored to text detection. More advanced versions such as DMPNet (Liu and Jin, 2017) and RRPN (Ma et al., 2018) are proposed.

Convolutional Recurrent Neural Networks (CRNNs) CRNNs combine CNNs and RNNs, and are tailored to predict a sequence of labels (Shi et al., 2017) from the images. An input image is first split into same-sized frames called receptive fields and the CNN layer extracts image features from each frame using convolutional and max-pooling layers with fully-connected layers being removed. Frame features are used as inputs to the bidirectional LSTM layers. The recurrent layers predict a label distribution of characters for each frame in the feature sequence. The idea of sequence label prediction is similar to CRFs: the predicted label for each frame is dependent on the labels of sounding frames. CRNN-based models outperform detection-based models on cases where texts are more densely distributed. In this paper, our OCR system uses CRNNs as backbones.

2.2 **Sequence-to-Sequence Models**

The **SEQ2SEQ** model (Sutskever et al., 2014; Vaswani et al., 2017) is a general encoder-decoder framework in NLP that generate a sequence of output tokens (targets) given a sequence of input tokens (sources). The model automatically learns the semantic dependency between source words and target words, and can be applied to a variety of generation tasks, such as machine translation (Luong et al., 2015b; Wu et al., 2016; Sennrich et al., 2015), dialogue generation (Vinyals and Le, 2015; Li et al., 2016a, 2015), parsing (Vinyals et al., 2015a; Luong et al., 2015a), grammar correction (Xie et al., 2016; Ge et al., 2018b,a; Grundkiewicz and Junczys-Dowmunt, 2018) etc.

The structure of SEQ2SEQ has kept evolving over the years, from the original LSTM recurrent models (Sutskever et al., 2014), to LSTM recurrent models with attentions (Luong et al., 2015b; Bahdanau et al., 2014), to CNN based models (Gehring et al., 2017), to transformers with self attentions (Vaswani et al., 2017).

2.3 **Image Caption Generation**

The image-caption generation task (Xu et al., 2015; Vinyals et al., 2015b; Chen et al., 2015) aims at generating a caption (which is a sequence of words) given an image. It is different from SEQ2SEQ tasks in that the input is an image rather than another sequence of words. Normally, image features are extracted using CNNs, based on which an decoder is used to generate the caption word by word. Attention models (Xu et al., 2015) is widely applied to map each caption token to a specific image region.
2.4 OCR Using Language Information

Using text information to post-process OCR outputs has long been existing (Tong and Evans, 1996; Nagata, 1998; Zhuang et al., 2004; Magdy and Darwish, 2006; Llobet et al., 2010). Specifically, Tong and Evans (1996) used language modeling probabilities to rerank OCR outputs. Nagata (1998) combined various features including morphology and word clusterings to correct OCR outputs. Finite-state transducers were used in Llobet et al. (2010) for post-processing. As far as we are concerned, our work is the first one that aims at learning to capture the error-making patterns of the OCR model. Additionally, the text-based model and the OCR model are pipelined and thus independent in previous work. Our work bridges this gap by combing the image information and OCR outputs together to generate corrections.

3 CRNNs for OCR

In this paper, we use the CRNN model (Shi et al., 2017) as the backbone for OCR. The model takes as input an image and output a sequence of characters. It consists of three major components: CNNs for feature extraction, LSTMs for sequence labeling and transcription.

CNNs for feature extraction Using CNNs with layers of convolution, pooling and element-wise activation, an input image D is first mapped to a matrix $M \in \mathbb{R}^{k \times T}$ matrix. Each column of the matrix m_t corresponds to a rectangle region of the original image in the same order to their corresponding columns from left to right. m_t is considered as the image descriptor for the corresponding receptive field. It is worth noting that one character might correspond to multiple receptive fields.

LSTMs for Sequence Labeling The goal of sequence labeling is to predict a label q_t for each frame representation m_t. q_t takes the value of the index of a character from the vocabulary or a BLANK label indicating the current receptive field does not correspond to any character. We use Bi-directional LSTMs, obtaining c^left_t from a left-to-right LSTM and c^right_t from a right-to-left LSTM for each receptive field. c_t is then obtained by concatenating both:

$$
c^\text{left}_t = \text{LSTM}^\text{left}(c^\text{left}_{t-1}, m_t)
$$

$$
c^\text{right}_t = \text{LSTM}^\text{right}(c^\text{right}_{t+1}, m_t)
$$

$$
c_t = [c^\text{left}_t, c^\text{right}_t]
$$

(1)

The label q_t is predicted using c_t:

$$p(q_t|c_t) = \text{softmax}(W \times c_t)
$$

(2)

The sequence labeling model outputs a distribution matrix to the transcription layer: the probability of each receptive field being labeled as each label.

Transcription The output distribution matrix from the sequence labeling stage gives a probability for any given sequence or path $Q = \{q_1, q_2, ..., q_t\}$. Since each character from the original image can sit across multiple receptive fields, the output from LSTMs might contain repeated labels or blanks, for example, Q can be $\text{hhh-ell-l-oo-}-$. Here we define a mapping B which removes repeated characters and blanks. B maps the output format from the sequence labeling stage Q to the format L. For example,

$$B(\text{Q:--hhh-e-llll-oo--}) = \text{L: hello}
$$

The training data for OCR does not specify which character corresponds for which receptive field, but rather, a full string for the whole input image. This means that we have gold labels for L rather than Q. Multiple Qs thus can be transformed to one same gold L. The Connectionist Temporal Classification (CTC) layer proposed in Graves et al. (2006) is adopted to bridge this gap. The probability of generating sequence label L given the image D is the sum of probability of all paths Q (computed from the sequence labeling layer) given by that image:

$$p(L|D) = \sum_{\pi:B(Q)=L} p(Q|D)
$$

(3)
Directly computing Eq. 3 is computationally infeasible because the number of Q is exponential to the number of its containing characters. Forward-backward model is used to efficiently compute Eq. 3. Using CTC, the system can be trained based on image-string pairs in an end-to-end fashion. At test time, a greedy best-path-decoding strategy is usually adopted, in which the model calculates the best path by generating the most likely character at each time-step.

4 LOP-OCR

In this section, we describe the LOP-OCR model in detail.

4.1 Text2Text Correction

To learn the mistake-making pattern of the OCR model, we need to construct mappings between OCR errors and correct outputs. We can achieve this goal by directly training a Text2Text correction model using SEQ2SEQ models. The correction model takes as inputs the outputs of the OCR model and generate correct sequences. Suppose that L = \{l_1, l_2, ..., l_{N_L}\} is an output from the CRNN model. L is the source input to the OCR-correction model. Each source word l is associated with a k-dimensional vector representation x. We use $X = [x_1, x_2, ..., x_{N_L}]$ to denote the concatenation of all input word vectors. $X \in R^{k \times N_L}$. $Y = \{y_1, y_2, ..., y_{N_Y}\}$ is the output of OCR-correction model. The SEQ2SEQ model defines the probability of generating Y given L:

$$p(Y|L) = \sum_{t \in [1, N_y]} p(y_t|L, y_{1:t-1}) \quad (4)$$

It is noting worth that the length of the source N_l and that of the target N_y might not be the same. This stems from the fact that CRNNs at the transcription stage might mistakenly map a blank to a character, or a character to a blank, leading the total length to be different.

For the SEQ2SEQ structure, we use transformers (Vaswani et al., 2017) as a backbone. Specifically, the encoder consists of 3 layers, and each layer consists of a multi-head self attention layer, a residual connection layer and a positionwise fully connected layer. For the purpose of illustration, we only use $n_{head}=1$ for illustration. In practice, we set the number of multi-heads to be 8. Let $h^t_i \in R^{K \times 1}$ denote the vector for time step t on the i^{th} layer. The operation at the self-attention layer and the feed-forward layer are shown as follows:

$$\text{atten}^i = \text{softmax}(h^t_i \times W^T_i)W^i$$

$$h^{i+1}_t = \text{FeedForward}(\text{atten}^i + h^t_i) \quad (5)$$

At the encoding time, W^i is the stack of vectors for all source words. At the decoding times, W^i is the stack of vectors for all source words plus words that have been generated, as being referred to as masked self-attention in Vaswani et al. (2017).

4.2 Text+Image2Text Correction

The issue with the Text2Text correction model is that corrections are conducted only based on OCR outputs, and that the model ignores important evidence provided by the original image. As will be shown in the experiment section, a correction model only based on text context might change correct outputs wrongly: changing correct OCR outputs to sequences that are highly grammatical but contain characters irrelevant to the image. The image information is crucial in providing guidance for error corrections.

One direct way to handle this issue is to use the concatenation the image matrix D and input string embeddings X as inputs to the SEQ2SEQ model. The disadvantage of doing so is obvious: we are not able to harness any information from the pretrained OCR model. We thus use intermediate representations from the RCNN-OCR model rather than the image matrix D as SEQ2SEQ inputs. Recall that receptive fields d from the original image is mapped to vector representations using CNNs, and then a Bidirectional LSTM integrates context information and obtains vector representations $c = \{c_1, c_2, ..., c_{CN}\}$ for the corresponding receptive fields. We use the combination of X and C as SEQ2SEQ model inputs.

There are two ways to combine C and X: vanilla concatenation (vanilla-concat for short) and aligned concatenation (aligned-concat for short), as will be described in order below.

vanilla-concat directly concatenates $C \in R^{k \times NC}$ and $X \in R^{K \times NL}$ along the horizontal axis. This makes the dimensionality of the input representation to be $k \times (N_L + N_C)$. One can think this strategy as the input containing $N_L + N_C$ words. At the encoding time, self-attention operations are performed between each pair of inputs at the complexity of
Figure 3: Illustration of the OCR-correction model with vanilla transformers and transformers using image information.

\[(N_L + N_C) \times (N_L + N_C)\]. This process can be thought as learning to construct links between source words and their corresponding receptive fields in the original image.

aligned-concat aligns intermediate representations of CRNNs \(c\) with corresponding input words \(x\) based on results from the CRNN model. Recall that at decoding time of CRNN, the model calculates the best path by selecting the most likely character at each time-step: \(c\) is first translated to the most likely token \(q\) at the LSTM sequence labeling process. Then the sequence of \(Q\) is mapped to \(L\) based on the mapping pattern \(B\) by removing repeated characters and blanks. This means that there is a direct correspondence between each decoded word \(l \in L\) and receptive field representation \(c\). The key idea of aligned-concat is to concatenate each source word \(x\) with corresponding receptive fields \(c\). Since one \(x\) can be mapped to multiple receptive fields, we use one layer of convolution with max pooling to map a stack of \(c\) to a vector with invariant length \(k\). This vector is then concatenated with \(x\) along the vertical axis, which makes the dimensionality of the input to transformers to be \(2k \times N_L\).

For both vanilla-concat and aligned-concat models, inputs are normalized using layer normalizations since \(C\) and \(X\) might be of different scales. The SEQ2SEQ training errors are also back-propagated to the RCNN model. At decoding time, for all models (Text2Text and Text+Image2Text), we use beam search with a beamsize of 15.

4.3 Two-Way Corrections and Data Noising

The proposed OCR-correction model generates sentences from left to right. Therefore, errors are corrected based on left-to-right language models. This naturally points to its disadvantage: the model ignores the right-sided context.

To take advantage of the right-sided context information, we trained another OCR-correction model, with the only difference being that the token is generated from right to left. The right-to-left model shares the same structure with the left-to-right model. At both training and test time, the right-to-left model takes as input the output from the left-to-right model, and generate corrected sequences. Such strategy has been used in the literature of grammar correction (Ge et al., 2018b).

We also adopted the data noising strategy for data augmentation, which is proposed in SEQ2SEQ models (Xie et al., 2018). We implemented a backward SEQ2SEQ model to generate sources (sequences with errors) from targets (sequences without errors). We used the diverse decoding strategy (Li et al., 2016b) to map one correct sentence to multiple sentences with errors. This will increase the model’s ability to generalize since the grammar correction model is exposed to more errors.
5 Experimental Results

In this section, we first describe the details for dataset construction, and then we report experimental results.

5.1 Dataset Construction

Since there is no publicly available datasets for large-chunk text OCR, we create a new benchmark. We generate image datasets using large-scale corpora. Images are generated and augmented dynamically during training. Two corpora are used for data generation: (1) Chinese Wikipedia: a complete copy of Chinese Wikipedia collected by Dec 1st, 2018 (448,858,875 Chinese characters in total) (2) Financial News: containing 200,000 financial related news collected from several Chinese News websites (308,617,250 characters in total). The CRNN model detects 8384 distinct characters, including common Chinese characters, English alphabet, punctuations and special symbols. We split the corpus into a set of short texts with smaller size (12-15 characters), and then we separated the text set into training, validation and test subsets with a proportion of 8:1:1. Within each subset of short texts, an image is generated for each short text by the following process: f (1) randomly picked a background color, a text color, a Chinese font and a font size for the image; (2) randomly pick a 32 × 300 pixel RGB image with the attributes given in (1) and make a Chinese font and a font size for the image; (3) draw the short text on a 32 × 300 pixel RGB image with a combination of 20 augmentation functions (including blurring, adding noises, affine transformations, adding color filters, etc.) to reduce the fidelity of the image so as to increase the robustness of CRNN model. The benchmark will be released upon publication.

5.2 Results

For correction models, we train a three-layer transformer with the number of multi-head set to 8.
We report the following numbers for evaluation: (1) average edit distance; (2) pos-acc: position-level accuracy, indicating whether in the corresponding positions of the decoded sentence and the reference sits the same character; (3) sen-acc: sentence-level accuracy, taking the value of 1 if the decoded sentence is exactly the same as the gold one, 0 otherwise; (4) BLEU-4: the four-gram precision of generated sentences (Papineni et al., 2002); and (5) Rouge-L: the recall of generated sentences (Lin, 2004).

Results are shown in Table 2. The Text2Text model takes outputs from the CRNN-OCR models as inputs, and feeds them to a vanilla transformer for correction. As can be seen, it outperforms the original OCR model by a large margin, increasing sentence-level accuracy from 77.9 to 84.1, and BLEU-4 score from 88.4 to 90.5. Figure 4 shows attention values between sources and targets at decoding time. We can see that the correction model is capable of learning the mapping between ground truth characters and errors, and consequently introduces significant benefits. ex1 and ex2 in Table 3 illustrate the cases where correction models are able to correct mistakes from the OCR model: in ex1, 傧 in 傧首 is corrected to 榜 in 榜首 (rank top); in ex2, 菜 in 菜农 is corrected to 菜 in 菜农 (vegetable farmers).

The Text+Image2Text models, both the vanilla-concat and the aligned-concat models, significantly outperform the Text2Text model, introducing an increase of 2.1 and 2.9 respectively with respect to sentence-level accuracy, and +1.1 and +1.7 with respect to BLEU-4 scores. This is in accord with our expectation: information from the original input image provides guidance for the correction model. Tangible comparisons between the Text2Text model and Text+Image2Text model are show in ex3, ex4 and ex5 of Table 3. For ex3 and ex4, the OCR model actually outputs correct outputs. But the Text2Text correction model changes the OCR output mistakenly. This is because the model is prone to making mistakes when image information is lost and context information dominates. The Text+Image2Text model doesn’t have the above issues since a character is to be corrected only when the image provides strong evidence. In ex5, the Text+Image2Text model is able correct the mistake that the Text2Text model fails to correct.

Additional performance boosts are observed when using round-way corrections and adding noise to perform data augmentation. When combing all strategies, LOP-OCR is able to increase sentence-level accuracy from 77.9 to 88.9, position-level accuracy from 91.8 to 96.5 and BLEU score from 88.4 to 93.3.

6 Conclusion

In this paper, we propose LOP-OCR: A Language-Oriented Pipeline for Large-chunk Text OCR. The major component of LOP-OCR is an error correction model, which incorporates image information into the seq2seq model. LOP-OCR is able to significantly improve the performance of the CRNN-based OCR models, increasing sentence-level accuracy from 77.9 to 88.9, position-level accuracy from 91.8 to 96.5, BLEU scores from 88.4 to 93.3.
Reference

